Water Use Reduction
Additional Guidance

December 1, 2009 (Updated August 16, 2010)

This guidance applies to Water Efficiency (WE) Prerequisite 1 and WE Credit 3 in LEED 2009 for New Construction, LEED 2009 for Schools, and LEED 2009 for Core & Shell. This also applies to WE Prerequisite 1 and WE Credit 1 in LEED 2009 for Commercial Interiors and WE Prerequisite 1 and WE Credit 2 in LEED 2009 for Existing Buildings: Operations & Maintenance. The guidance is a supplement to the prerequisite and credit forms listed above. It is suggested to refer to the appropriate Reference Guide for implementation and calculation information and become familiar with the associated forms before using this guidance.

Please note the Appendix A: LEED 2009 CI WEp1/c1 Addenda FAQ is applicable to LEED 2009 CI projects only.

Fixture Groups

Fixture usage groups are subsets of the project building (or project space for LEED-CI) occupancy based on different types of fixtures and fittings. Creating a single usage group is the simpler approach and is suitable for many buildings, including those that have the same usage patterns across all fixtures. If the project team desires, a different fixture group may be specified for each unique usage pattern in the project building. For example, if fixture usage patterns are different on the first floor of the project building compared to other floors, enter a separate fixture group for the first floor. The fixture groups are not for specific fixtures or fixture fittings, but are for specific spaces or areas within the project depending on the distribution of occupancy.

Total Daily Uses Calculation

The following tables include the default fixture use rates that are used in the Baseline and Performance case water use calculations.

Table 1. Non-residential Default Fixture Uses

<table>
<thead>
<tr>
<th>Fixture Type</th>
<th>Duration (sec)</th>
<th>Uses / Day</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>FTE</td>
<td>Transient</td>
<td>Retail Customer</td>
<td>Students³</td>
</tr>
<tr>
<td>Water Closet (Female)</td>
<td>n/a</td>
<td>3</td>
<td>0.5</td>
<td>0.2</td>
<td>3</td>
</tr>
<tr>
<td>Water Closet (Male)¹</td>
<td>n/a</td>
<td>1</td>
<td>0.1</td>
<td>0.1</td>
<td>1</td>
</tr>
<tr>
<td>Urinal (Female)</td>
<td>n/a</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Urinal (Male)</td>
<td>n/a</td>
<td>2</td>
<td>0.4</td>
<td>0.1</td>
<td>2</td>
</tr>
<tr>
<td>Lavatory Faucet</td>
<td>15²</td>
<td>3</td>
<td>0.5</td>
<td>0.2</td>
<td>3</td>
</tr>
<tr>
<td>Shower</td>
<td>300</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kitchen Sink</td>
<td>15</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

¹ If urinals are not installed for the fixture usage group, then the Water Closet (Male) usage rates are the same as the Water Closet (Female).
² 12 seconds with autocontrol
³ The Students occupancy type is for use with LEED for Schools ONLY.
Table 2. Residential Default Fixture Uses

<table>
<thead>
<tr>
<th>Fixture Type</th>
<th>Duration (sec)</th>
<th>Uses / Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Closet (Female)</td>
<td>n/a</td>
<td>5</td>
</tr>
<tr>
<td>Water Closet (Male)</td>
<td>n/a</td>
<td>5</td>
</tr>
<tr>
<td>Lavatory Faucet</td>
<td>60</td>
<td>5</td>
</tr>
<tr>
<td>Shower</td>
<td>480</td>
<td>1</td>
</tr>
<tr>
<td>Kitchen Sink</td>
<td>60</td>
<td>4</td>
</tr>
</tbody>
</table>

The Total Daily Uses is a necessary value for determining the annual water consumption in the Flush and Flow Fixture data tables. The total daily uses value is an aggregate of the daily uses for various occupancy types represented in the selected fixture usage group. The table below is a snapshot of an example Flush Fixture Data table from the WEp1 form, and highlights the location of the Total Daily Uses value.

For water closets and urinals, the total daily use calculation takes into account the number of occupants in the fixture usage group, the default fixture uses (see tables 1 and 2 above), and the male/female ratio of the fixture usage group. For example, the water closet total daily uses for a fixture group with 100 total FTE occupants and a 50/50 male/female ratio would be calculated accordingly:

Example Total Daily Uses

\[
\text{(FTE} \times \text{Male Ratio} \times \text{Water Closet \ (male) uses/day}) + (\text{FTE} \times \text{Female Ratio} \times \text{Water Closet (female) uses/day})
\]

\[
(100 \times 0.5 \times 1 \text{ use/day}) + (100 \times 0.5 \times 3 \text{ uses/day}) = 200
\]

The default calculation assumes that both water closets and urinals are installed for each fixture usage group. If urinals are not included, the Total Daily Uses must be modified such that the water closet default uses per day are the same for both males and females. See the following example for a fixture usage group where urinals are not included.

Example Total Daily Uses (no urinals)

\[
\text{(FTE} \times \text{Male Ratio} \times \text{Water Closet uses/day}) + (\text{FTE} \times \text{Female Ratio} \times \text{Water Closet uses/day})
\]

\[
(100 \times 0.5 \times 3 \text{ uses/day}) + (100 \times 0.5 \times 3 \text{ uses/day}) = 300
\]
For lavatory faucets, showers, and kitchen sinks, the daily use calculation takes into account the number of occupants in the fixture usage group and the default fixture uses (see tables 1 and 2 above). For example the lavatory faucet total daily uses for a fixture group with 100 FTE and 30 retail customers would be calculated accordingly:

\[
\text{Example Total Daily Uses} = (\text{FTE} \times \text{Lavatory faucet uses/day}) + (\text{Retail Customer} \times \text{Lavatory faucet uses/day})
\]

\[
(100 \times 3 \text{ uses/day}) + (30 \times 0.2 \text{ uses/day}) = 306
\]

The total daily uses may be modified for special circumstances. Provide a narrative and upload daily use calculations to justify the modifications.

Dual Flush Toilet Flow Rate

The actual dual flush toilet flow rate should be entered in to the Flush Fixture Data table as a weighted average. This average must take into account the full-flush rate and low-flush rate of the dual flush water closet and the number of times the full and low flush would be used, and whether or not urinals are installed. For the female water closet usage, there is a 1:2 ratio in terms of number of full-flush to low-flush uses per day. For the male water closet usage, there is 1 full-flush usage per day; unless urinals are not installed in which case the full-flush/low-flush ratio is the same as for females.

In the example below, a dual flush toilet was installed with a 1.6 gpm full flush rate and 1.1 gpm low flush rate and male restrooms include urinals.

\[
\text{Example Average flow rate} = \left(\frac{(\text{Male full-flush uses/day} \times \text{Full-flush rate}) + (\text{Female full-flush uses/day} \times \text{Full-flush rate}) + (\text{Female low-flush uses/day} \times \text{Low-flush rate})}{\text{Male & Female total uses/day}} \right)
\]

\[
(1 \text{ use/day} \times 1.6 \text{ gpm}) + (1 \text{ use/day} \times 1.6 \text{ gpm}) + (2 \text{ uses/day} \times 1.1 \text{ gpm}) / 4 \text{ uses/day} = 1.35 \text{ gpm}
\]

This average flow rate would entered in the Flow Fixture Data table in the “Flow Rate (GPM/GPC)” section of the form under “Installed” for the metering lavatory faucet fixture type.

In cases where the manufacturer’s specifications provide a different weighted average, it is acceptable to use the recommendation. Please upload the specifications or provide a narrative and calculations to explain how the weighted average flush rate was derived.

Public Metering Lavatory Faucet – Gallons per Cycle Conversion

When using a metering (or autocontrol) faucet, please select the Metering Lavatory fixture in the Fixture Type pull-down menu of the Flow Fixture Data table.

The Baseline case flow rate for a metering faucet is .25 gallons per cycle (gpc). Since the flow rate is measured in gallons per cycle, the duration is not necessary. Therefore the Duration can be disregarded and should not be modified for the metering lavatory fixture type. The "Installed” flow rate must also be entered in gallons per cycle.
If the flow rate in gallons per cycle is not known, the value must be determined through a separate conversion calculation and then entered into the table. The flow rate is determined using the flow rate in gallons per minute (gpm) and the duration setting (in seconds) for the metering faucet. The typical duration setting for the installed metering faucet is 12 seconds, however a different duration may be used if supported by manufacturer’s specifications.

\[
\text{Installed flow rate} = \frac{\text{Flow rate (gpm)} \times \text{Duration (sec per cycle)}}{60 \text{ sec}}
\]

Example Installed flow rate = 1.0 gpm * (12 sec / 60) = .2 gpc

Non-potable Water Use Calculations

Overall, the focus of Water Use reduction prerequisite and credit is water efficiency of the installed fixtures and fixture fittings regardless of the water source, but projects are still allowed to use on-site alternative sources of water to achieve water use reduction through an alternative compliance path.

To document the use of on-site non-potable water to reduce water use for flush and flow fixtures, use the Alternative Compliance Path (ACP) section of the applicable LEED Online forms, WEP1 and/or WEC3 (WEC1 for CI and WEC2 for EBOM).

Complete the flush and flow fixture tables with the actual flush and flow rates to determine the total baseline and performance case water usage. In the ACP section, provide the annual amount of non-potable water being used for each flush and flow fixtures. The annual amounts of non-potable water should be subtracted from the annual flush and flow fixture performance case water usage. Then use the results to recalculate the percent reduction of water use for all fixtures.

Also provide additional documentation/calculations to support the savings claimed from on-site sources of non-potable water use (this may include but is not limited to plumbing drawings, calculations and system capacity to support quantities provided, and any analysis to confirm the availability of the non-potable water source).

Example Calculations

1. Subtract the non-potable water that will be used for flush and flow fixtures.

| **Total calculated flush fixture water use annual volume, performance case (kGal) – calculated in WEP1 form** | 150 |
| **Annual quantity of non-potable water use for flush fixtures (kGal)** | 60 |
| **Adjusted flush fixture water use annual volume, performance case (kGal)** |
| 150 kGal – 60 kGal | **90** |

| **Total calculated flow fixture water use annual volume, performance case (kGal) – calculated in WEP1 form** | 150 |
| **Annual quantity of non-potable water use for flow fixtures (kGal)** | 0 |
| **Adjusted flow fixture water use annual volume, performance case (kGal)** |
| 150 kGal – 0 kGal | **150** |
2. Determine the total adjusted performance case water use and then use this value to recalculate the percent reduction of water use in all fixtures

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total calculated fixture water use annual volume, baseline case (kGal)</td>
<td>400</td>
</tr>
<tr>
<td>Adjusted total fixture water use annual volume, performance case (kGal)</td>
<td>240</td>
</tr>
<tr>
<td>90 kGal + 150 kGal</td>
<td></td>
</tr>
<tr>
<td>Percent reduction of water use in all fixtures (%)</td>
<td>40%</td>
</tr>
</tbody>
</table>
| \[
| \frac{([400 \text{ kGal} - 240 \text{ kGal}])}{400 \text{ kGal}} \times 100 \] |
| 40% |
LEED 2009 CI Rating System Addenda was published in July 2010 for WE Prerequisite 1 and WE Credit 1. Below are frequently asked questions which will assist project teams with regard to application of the addenda and submittal requirements. This guidance applies to LEED 2009 CI projects ONLY.

1. Is my LEED 2009 CI project required to follow the LEED 2009 CI WE addenda published July 2010?

A project that is registered after July 19, 2010 will be required to follow the addenda and should upgrade to the post-beta updated version of the form if it has been released. If you have registered the project after the post-beta updated version of the form is released, the project will automatically receive the updated WEp1 and WEc1 forms in LEED Online v3.

A project that was registered before July 19, 2010, is not required to follow the addenda, and therefore is required to include fixtures and fixture fittings that are installed or modified as part of the LEED-CI project's scope of work for both the Prerequisite and Credit. However, if the project team decides to voluntarily apply the addenda, there are instructions below in question 2 on how to complete the beta version or version 3.0 of the WEp1 and WEc1 forms. If the post-beta updated version of the form is available, consider upgrading to that form.

For more information on form improvements and upgrading, click here.

2. How do I do complete the beta version or version 3.0 of the WE Prerequisite 1 / WE Credit 1 forms when applying the LEED 2009 CI WE addenda (published July 2010) to my project?

First determine the project circumstances according to the following cases:

- Case 1 - Fixtures and fixture fittings are located only within the tenant space to meet the needs of the tenant occupancy and there are none located outside the tenant space.
- Case 2 - Fixtures and fixture fittings are located only outside the tenant space to meet the needs of the tenant occupancy and there are none located inside the tenant space.
- Case 3 – Fixtures and fixture fittings are located both within and outside the tenant space to meet the needs of the tenant occupancy and water savings will be claimed for all fixtures and fixture fittings.
- Case 4 – Fixtures and fittings are located both within and outside the tenant space to meet the needs of the tenant occupancy, however water savings is claimed ONLY for the fixtures and fixture fittings located inside the tenant space.

Once the project circumstances are identified, complete the form according to the following instructions:
APPENDIX A: LEED 2009 CI WEp1/c1 Addenda FAQ

Case 1 and Case 3 - Use the Special Circumstances section to describe the project circumstances. Complete the WE Prerequisite 1 form tables with the appropriate fixtures and fixture fittings as indicated by the project circumstances, which will also be reflected in the WE Credit 1 form.

Case 2 – The project is exempt from earning WE Prerequisite 1, so use the Alternative Compliance path section to describe the project circumstances. Include whether WE Credit 1 will be pursued for the fixtures and fixture fittings located outside of the tenant space. If WE Credit 1 is pursued complete the tables in WE Prerequisite 1 form for the fixtures/fittings located outside of the tenant space so that the water use reduction savings is reflected in the linked WE Credit 1 form. If WE Credit 1 is not being pursued, the tables in WE Prerequisite 1 form can be left blank.

Case 4 - Use the Special Circumstances section to describe the project circumstances. Complete the WE Prerequisite 1 form tables with the appropriate fixtures and fixture fittings as indicated by the project circumstances. In this case, the project is not eligible to achieve WE Credit 1 because they are not achieving water use reduction for all of the fixtures and fittings necessary to meet the needs of the occupants. Therefore the water use reduction reflected in the WE Credit 1 form is not valid, and there will be no points earned.